Mammography – Technical Aspects

Richard D. Nawfel Medical Physicist

Department of Radiology Brigham and Women's Hospital and Harvard Medical School Boston, MA

Reading Assignment

1. Bushberg et al. The Essential Physics of Medical Imaging, Ch. 8

- 2. Huda. W., Review of Radiologic Physics, 4th edition, Ch.8
- **3. AAPM/RSNA Physics Tutorial for Residents:**

http://pubs.rsna.org/doi/pdf/10.1148/rg.246045102

Mammograhy

Most sensitive imaging test available for early breast cancer detection
Detect early stage disease, improved prognosis

Stage	Survival Rate (%)	
1	100	
2	93	
3	72	
4	22	

Only x-ray imaging test used for screening (asymptomatic patient)
 Screening – potential to reduce breast cancer mortality by 25% over the last 20 years

➤ ~ 15 – 20% cancers missed despite high quality images

Mammograhy

> Technically difficult radiographic exam

Performed by specially qualified personnel

> Dedicated breast imaging equipment

Goal: Produce high quality images of breast at *adequate* radiation dose

Mammography Physics

X-ray Tube

- 1. Focal Spot Size
 - 0.3 mm, 0.1 mm
 - improved resolution of microcalcifications (phantom 150-160 µm)
- Dual track anode:
 Mo, Rh photon energies appropriate for imaging breast tissue

X-ray Tube

 X-rays emerging toward cathode side of x-ray tube and penetrate small amount of anode material.

2. X-rays emerging on anode side of tube penetrate through greater amount of anode material.

Closest to chest wall Breast thickness greatest

X-ray beam gradient (decrease intensity) from cathode to anode side of tube

4. Tube port

a. Collimator – automatic, adjustable field sizes: Small - 19x23 cm Large - 24x31 cm MAG/Spot compression - 10x12 cm, 13x18 cm

b. Window – Be (thin layer); not glass
 Less attenuation of beam => ↑ subject contrast

Energy Spectrum

>Mammography requirement:

- Low beam energy (decreased penetration):
 - Enhance subject contrast
- High beam energy (increased penetration):
 - Reduce breast dose
 - Reduce tube heat loading
 - Shorter exposure time, especially thick/dense breast

Thus, need spectrum that provides balance between high image contrast and adequate radiation dose

Tube Potential

Image contrast significantly increased when low x-ray energy used to maximize photoelectric interaction in breast tissue

Chest radiograph using high kVp

Mammogram using low kVp

http://dx.doi.org/10.1148/radiographics.9.4.2667052

Energy Spectrum

Spectrum determined by:

- 1. Anode material Mo, Rh
- 2. Filter material Mo, Rh

- W (Tomosynthesis)
- Ag, Al (Tomosynthesis)
- **3.** Tube potential Typical, 25 32 kVp (max. energy of spectrum)

X-ray Beam:

Continuous radiation (Bremsstrahlung) – range of energies; max. (kVp) Characteristic radiation – discrete energies; determined by anode

Anode material	<u>k-edge (keV)</u>	Char. X-ray	en. (keV)
Mo	20.0	K _α : 17.9	K _β : 19.5
Rh	23.2	K _α : 20.2	K _β : 23.2

X-ray Tube

5. Filter Material

- a. Mo filter used w/Mo target th. = 0.03 mm
- b. Rh filter also can be used w/Mo target
- **b. k-edge = 20 keV, Mo characteristic enhanced**
- c. Low energy (< 15 keV), high energy (> 20 keV) removed
 - Increased subject contrast
 - Decreased entrance breast dose from low energy photons
- d. Excessive filtration reduces beam intensity:
 - longer exposure, motion blur

Technique

X-ray Absorption Differences:

- Adipose tissue $Density = 0.95 \text{ g/cm}^3$
- Glandular tissue Density = 1.02 g/cm³

▶ Differential attenuation between materials ⇒ *Image Contrast*

Calcifications

- High Z
- Maximize Photo. Elec. Absorption
- P.E. $\propto Z^3$ dominates in diagnostic energy range
- At low en. (20 keV) P.E. interaction dominates

Technique

Target/Filter material:

- Mo/Mo combination:
 - » Attenuates continuous spectrum above k-edge (20 keV)
 - » Typically used for thin or breast of average thickness
 - » Low/medium dense breast
- Mo/Rh combination:
 - » Shift spectrum to higher energies: 20 keV< photons < 23.2 keV
 - » Typically used for thicker/more dense breast
- Rh/Rh combination:
 - » Allows Rh characteristic (20.2, 23.2 keV); more penetrating beam
 - » Shift spectrum higher energies
 - » Typically used for very thick/very dense breast

Technique

> Tube Potential (kVp, max. energy of spectrum)

- Typical 25 32 kVp Diag. X-ray (60 100 kVp)
- Ave. breast 25 29 kVp optimal
- Decrease kVp:
 - increase contrast, increase dose
 - decrease scatter

Tube current-exposure time (mAs)

- mA constant large f.spot (100-200 mA) small f. spot (30-50 mA)
- exp. time varies 30 msec. 6 sec.
 - long exposure times \Rightarrow
 - increase motion blur, reduces noise (improves image quality)
 - increases radiation dose

Compression

- Firm compression decreases breast thickness:
 - structures spread out more uniformly
 - structures closer to receptor \Rightarrow improve sharpness
 - x-rays travel through less tissue \Rightarrow decrease dose
 - less scatter radiation \Rightarrow increase image contrast
- ➤ Immobilize breast ⇒ reduce motion blur

> Improves image quality, reduces radiation dose

Magnification

- Contact mammography: SID = 66 cm, SOD = 61 cm, M = 1.08
- MAG stand used to place breast close to x-ray tube:
 - SID = 66 cm, SOD = 37 cm M = 1.8; SOD = 44 cm M = 1.5
 - Air gap technique (air gap between object and image receptor); reduces scatter
 - Grid removed: Compensate for dose increase
- > 0.1 mm focal spot use
 - Improve spatial resolution
 - Longer exposure time: lower mA with 0.1 mm focal spot
- Dose increase: breast tissue closer to focal spot
- Improved effective resolution: smaller object magnified

Automatic Exposure: AEC (Phototiming), AOP

- > AEC Select kVp, mAs automatic
- > AOP (Auto. Optimize parameters):
 - Pre-exposure samples breast tissue
 - kVp, mAs selected automatically
- Consistent optical density on film or digital signal
- > Reduce motion blur due to long exp. times
- > Must account for variation in kVp, breast thickness

Grid

Position

- Receptor Bucky
- Reciprocating: moves during exposure to blur grid lines
- Purpose
 - Important for scatter removal
 - Improvement in contrast
 - Increase in patient dose (approx. factor of 2 3)
 - Speed determines phototimed mAs => dose/noise tradeoff
 - Increase speed $\Rightarrow \downarrow$ dose, \downarrow motion blur, \uparrow noise
 - Decrease speed $\Rightarrow \uparrow$ dose, \uparrow motion blur, \downarrow noise

Image Receptor: Film/Screen

X-ray Film Components:

- 1. Base support, shape
- 2. Emulsion coating; silver halide, latent image formation light sensitive material (crystal grains)

Latent Image Formation

Exposure of silver grains to light (or x-rays) ⇒ atomic silver
 Exposure ⇒ Latent image formation ⇒ Development

Processing

- 1. Development
- 2. Fixing
- 3. Washing

Image Receptor: Film/Screen

Photographic Characteristics

Response of film to exposure: mAs => density kVp => contrast (gamma) Optical Density - measurement of film "blackness"

O.D. = log (opacity) = log (I_0/I_t) I_0 = incident I_t = transmitted

- log units; thus differences (orders of magnitude)
- physiological response of eye is differences in brightness that are logarithmic
- diagnostic (useful) range of O.D. ~ 0.25 to 3.0

Characteristic Curve (H&D Curve)

Image Receptor: Film/Screen

1. Response of film to exposure: Contrast Optical Density

2. Contrast

a. O.D. difference between areas on film; response to variation in exposure

b. contrast inversely related to film latitude

c. gamma: max. slope of char. curve

 $gamma = (D_2 - D_1)/(\log E_2 - \log E_1)$

3. Density – O.D. of Film

a. Slope changes with O.D.; (constant in linear portion)

b. Shoulder and toe regions: less contrast between steps

4. Speed (sensitivity):

Reciprocal of Exp. in *R* required to produce O.D. = 1.0 above base+fog Speed = 1/Exposure (*R*)

Ex. Exp. =10 mR Speed = $1/(0.01R) = 100 R^{-1}$

Image Receptor: Film/Screen

- Speed inversely related to exposure:
 - $\hat{\uparrow}$ speed \Rightarrow less exp. required to obtain given O.D.
 - \Downarrow speed \Rightarrow more exp. required to obtain given O.D.
- ► Film speed (sensitivity) matched to emission spectra of screen Lanex (screen) ⇒ Green Ortho G (film) ⇒ 100 speed

Processing Conditions (time and temp.)

In general, **1** development time or temp:

- **1** ave. gradient (contrast), then levels off
- **1** speed (density), then levels off
- **î** fog (decreases contrast)

Intensifying Screens

Purpose:

- Convert x-ray energy to light which exposes film
- Coupled to one side single emulsion film
 x-rays → light → film exposure
- 1. Luminescence emission of light by a material: Gd₂O₂ S (green light emission)
- 2. Advantages:
 - a. Decrease exposure time; reduce blur due to patient motion
 - **b. Reduce patient & personnel dose**
 - c. Increase life of x-ray tube
 - d. Can choose lower kVp which increases subject contrast
 - e. Can choose smaller focal spot size; minimize geometric unsharpness

Intensifying Screens

3. Disadvantages: loss of image information

- a. **Poorer resolution spreading of light; screen/film contact**
- **b.** Noise increased (decrease in no. of x-ray photons used)

Intensification

Screen converts few x-ray photons into many light photons \Rightarrow reduction in patient exposure ~ factor of 50 – 100

Intensification factor:

IF = (exp. required without screen)/(exp. required with screen)

Screen Speed

- Measure of relative light output
- Inversely related to exposure required to produce a given photographic effect

Intensifying Screens

Categories:

- a. Slow (detail, high resolution)
- **b.** Medium (par)
- c. Fast (high speed)

Conversion of x-ray to light:

1 x-ray photon \Rightarrow 4000 light photons (rare earth, Gd₂O₂S)

Screen Mottle

Speed tradeoff with noise of screens Depends on no. of photons absorbed by screen

- Fast screens absorb fewer x-ray photons; leads to increased noise

Screen/Film Mammography

Advantages

- High contrast (inherent film); differentiate small differences in breast tissue
- High spatial resolution (15 lp/mm); enhance microcalcification visibility
- Different receptor sizes
- Control of patient exposure
- Display multiple films/views; bright light viewbox
- Storage of film at low cost

Disadvantages

- Extreme sensitivity of film to changes in exposure; QA maintenance
- Limited dynamic range limited visibility of all tissue structures; AEC position
- Control of patient exposure
- Dynamic range effect on contrast
- No post processing; image manipulation
- Noise due to film grain

Digital Mammography

- Digital Detector captures transmitted x-ray distribution pattern Size: 19x23 cm, 24x31 cm
- >Exposure technique of breast same as for screen/film
- X-ray pattern displayed as black and white image on computer screen using specialized electronics
- > Image manipulation available to radiologist
 - Brightness
 - Contrast
 - Magnification

Digital Mammography

Digital Detectors

Indirect: x-rays → light → electronic signal
 (similar to process for screen/film)

− Direct: x-ray → electronic signal

Photons

ETECTOR

Fig. 2.

Read Out Electronics

Digital Data

Cesium lodide scintillator absorbs x-ray photons and converts them to light. A needle-like CsI structure minimizes scatter.

Low-noise photodiode array absorbs light and converts it into an electronic charge. Each photodiode represents a pixel or picture element.

Charge at each pixel is read out digitally by low-noise electronics and sent to an image processor.

* Senographe 2000 D

GE Medical Systems

Digital Mammography

Senographe 2000 D

- 1st FFDM system in U.S.
- a-Si flat panel; 1920 x 2304 detector elements
- 19 x 23 cm area detector
- Pixel resolution 100 µm
- Coupling between CsI crystal structures and photodiode results in some loss of resolution compared with direct capture

Digital Mammography

Dynamic range: signal vs. exposure

- Linear vs. Sigmoidal (Screen/Film)
- Wide range (10⁴:1) vs. Screen Film (30:1); eliminates over/under exposure
- Fewer repeat images => lower patient dose
- Visibility of all tissue structures (Fat => Skin line)
- \downarrow noise by \uparrow exposure
- Limit control of patient dose

Image Processing

- Manipulate grey scale (characteristic curve) of pixel values
- Maximize contrast (gamma)
- Choose LUT (curves) to maximize image task
- Window/Level; software algorithms (similar to CT recon. kernels)
- CAD

Comparison: Digital vs. Film

Diagnostic Outpatient Imaging El Paso, TX © 2007 Copyright All Rights Reserved

Image Quality: Potential Problems

- Image blur
 - compression, patient motion, exposure time, kVp too low
- Light/dark films
 - exp. time too short/long, penetration, processor unstable
 - darkroom fog
 - review phantom images
- > Image blur, resolution
 - compression, film/screen contact
- > Artifacts
 - dust from screens/processor, blotchy (filter), streaks (processor)

Stereotactic Breast Biopsy

Purpose

- Analyze tissue cells usually performed after abnormal mammogram
- Invasive procedure using needle (gun) to excise small tissue sample of breast
- Sample analyzed in lab for abnormalities
- Determines follow up testing/treatment

Procedure

- X-ray tube and DAQ below table; patient prone on table
- Breast compressed between 2 plates with small window for needle access
- 2 Stereo views obtained at 15⁰ on either side of breast
- Using computer and digital stereo views lesion coordinates identified
- Localization accuracy usually within 1 mm
- Needle gun fired into lesion and sample removed

Stereotactic Breast Biopsy

Hologic, The Women's Health Company; Breast Biopsy

Stereotactic Breast Biopsy

C Mayo Foundation for Medical Education and Research. All rights reserved.

Digital Breast Tomosynthesis (DBT)

Imaging technique

- Sreast firmly compressed as it is during conventional mammography
- Several low dose x-ray exposures used to create a 3D image of breast sometimes called 3D imaging
- ***** X-ray tube rotates around the breast through 15 degrees; 1 exposure taken at every degree
- ***** Image slices created with 1 mm interval between slices
- ***** Images viewed on high resolution workstations slice by slice

Radiation Dose

- Comparable to that of 2D conventional mammography
- ***** Sum of several low dose x-ray exposures

> 3D Imaging

- ***** 3D representation of breast tissue
- ***** Unlike 2D mammography overlapping tissue removed; problem of superposition eliminated
- ***** Tumor visibility enhanced with improved resolution of structures within each slice
- *** DBT/mammography comparison similar to CT/radiography comparison**
- ***** Due to increased accuracy, DBT may replace mammography within next 10 years

Digital Breast Tomosynthesis (DBT)

Reference: Kontos, D. et al (2009): "Parenchymal Texture Analysis in Digital Breast Tomosynthesis for Breast Cancer Risk Estimation: A Preliminary Study"; Academic Radiology; v.16:283:298

Digital Breast Tomosynthesis (DBT)

References: hca.wa. Gov; Washington State Health Care Authority